Thermochemistry

HW-chapter 6

№	Questions
1	The standard state of an element or compound is determined at a pressure of and a temperature of (a) $760 \mathrm{~atm}, 0^{\circ} \mathrm{C}$ (b) $1 \mathrm{mmHg}, 273{ }^{\circ} \mathrm{C}$ (c) $760 \mathrm{~atm}, 0 \mathrm{~K}$ (d) $1 \mathrm{~atm}, 298 \mathrm{~K}$
2	2- Using the following reactions $\begin{array}{lc} \mathrm{C}(\mathrm{~s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CCl} 4(\mathrm{l}) & \Delta \mathrm{H}^{\mathrm{o}}=-135.4 \mathrm{~kJ} \\ \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HCl}(\mathrm{~s}) & \Delta \mathrm{H}^{\mathrm{o}}=-184.6 \mathrm{~kJ} \\ \mathrm{CH}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{~s}) & \Delta \mathrm{H}^{\mathrm{o}}=+74.8 \mathrm{~kJ} \end{array}$ calculate the standard enthalpy of reaction for the process $\mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CCl}_{4}(\mathrm{l})+4 \mathrm{HCl}(\mathrm{~g})$ (a) -152.9 kJ (b) -245.2 kJ (c) -337.5 kJ (d) -429.8 kJ
3	Calculate the specific heat of Freon-12, $\mathrm{CCl}_{2} \mathrm{~F}_{2}$, if it requires 2930 joules of heat to raise the temperature of 89.1 grams of this gas by $55.0^{\circ} \mathrm{C}$. (a) $0.00600 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$ (b) $0.598 \mathrm{~J} / \mathrm{g} \bullet \mathrm{K}$ (c) $1.67 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$ (d) $2.83 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$
4	4- The standard molar enthalpy change is -1277.3 kJ for the combustion of ethanol. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{CO} 2(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})$ Calculate the standard molar enthalpy of formation for ethanol based on the following standard enthalpies of formation: $\Delta \mathrm{H}^{\circ} f\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}^{\circ} f\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=-241.8 \mathrm{~kJ} / \mathrm{mol}$. (a) $-122.9 \mathrm{~kJ} / \mathrm{mol}$ (b) $-235.1 \mathrm{~kJ} / \mathrm{mol}$ (c) $-642.7 \mathrm{~kJ} / \mathrm{mol}$

	(a) $122.9 \mathrm{~kJ} / \mathrm{mol}$
5	When 86.7 grams of water at a temperature of $73.0^{\circ} \mathrm{C}$ is mixed with an unknown mass of water at a temperature of $22.3^{\circ} \mathrm{C}$ the final temperature of the resulting mixture is $61.7^{\circ} \mathrm{C}$. What was the mass of the second sample of water? (a) 24.9 g (b) 48.2 g (c) 302 g (d) 419 g

