Thermochemistry

HW-chapter 6

№	Questions
1	The standard state of an element or compound is determined at a pressure of and a temperature of
	(a) 760 atm, 0 °C
	(b) 1 mmHg, 273 °C
	(c) 760 atm, 0 K
	(d)1 atm, 298 K
2	2- Using the following reactions
	$C(s) + 2 Cl_2(g) \leftrightarrow CCl_4(l)$ $\Delta H^o = -135.4 \text{ kJ}$
	$H_2(g) + Cl_2(g) \leftrightarrow 2 \text{ HCl}(s)$ $\Delta H^{\circ} = -184.6 \text{ kJ}$
	$CH_4(g) \leftrightarrow 2 H_2(g) + C(s)$ $\Delta H^{\circ} = +74.8 \text{ kJ}$
	calculate the standard enthalpy of reaction for the process
	$CH_4(g) + 4 Cl_2(g) \leftrightarrow CCl_4(l) + 4 HCl(g)$
	(a) -152.9 kJ
	(b) -245.2 kJ
	(c) -337.5 kJ
	(d) -429.8 kJ
3	Calculate the specific heat of Freon-12, CCl ₂ F ₂ , if it requires 2930 joules of heat to raise the temperature of 89.1 grams of this gas by 55.0 °C.
	(a) 0.00600 J/g • K
	(b) 0.598 J/g • K
	(c) 1.67 J/g • K
	(d) 2.83 J/g • K
4	4- The standard molar enthalpy change is -1277.3 kJ for the combustion of ethanol.
	$C_2H_5OH(g) + 3 O_2(g) \leftrightarrow 2 CO2(g) + 3 H_2O(g)$
	Calculate the standard molar enthalpy of formation for ethanol based on the following standard enthalpies of formation: $\Delta H^{\circ}f[CO_2(g)] = -393.5 \text{ kJ/mol}$ and $\Delta H^{\circ}f[H_2O(g)] = -241.8 \text{ kJ/mol}$.
	(a) -122.9 kJ/mol
	(b)-235.1 kJ/mol
	(c) -642.7 kJ/mol
	(c) -642.7 kJ/mol

	(a) 122.9 kJ/mol
5	When 86.7 grams of water at a temperature of 73.0 °C is mixed with an unknown mass of water at a temperature of 22.3 °C the final temperature of the resulting mixture is 61.7 °C. What was the mass of the second sample of water?
	(a) 24.9 g
	(b) 48.2 g
	(c) 302 g
	(d) 419 g